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This  paper cons ide r s  t h e  simultaneous s o l u t i o n  of t h e  mat r ix  

equat ions  AH + HA* = A*H + HA = I where H i s  Hermitian.  A f u l l  

c h a r a c t e r i z a t i o n  of A i n  terms of a given H is obtained.  Various 

r e s u l t s  are a l s o  obtained f o r  those H s a t i s f y i n g  the  equat ions  wi th  a 

given A .  

This  paper w a s  prepared as a r e s u l t  of work performed under NASA Contract  
No. NASI-14101 whi le  t h e  au tho r s  were i n  r e s idence  a t  ICASE, NASA Langley 
Research Center ,  Hampton, VA 23665. 
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I. Introduction 

We consider the problem of finding those matrices A and Hermitian 

matrices H which simultaneously satisfy 

and 

AH + HA* = I 

A*H + HA = I. 

This problem was suggested by Taussky [3 ] .  Davis [ 2 ]  obtained some results 

for normal or real matrices A. 

[l] who was mostly concerned with ascertaining conditions such that an 

which satisfies (1) is normal. In this work we obtain more general results 

which include some results of Davis and Barker as special cases. 

stance, a resuit of barker is proved under a less stringent hypothesis. 

Partial results were also obtained by Barker 

A 

In one in- 

We 

and 

which 

known y 

shall find it convenient to consider 

(A+A*)H + H(A+A*) = 21 

(A-A*)H = H(A-A*) (3) 

re equivalent to (1). Then from either of (1) nd (2) it is well 

e.g. Taussky [ 4 ] ,  that A, H and (A+A*) must be nonsingular. Also 

(3) obviously states that H and the skew-Hermitian part of A must com- 

mute if (1) is to hold. 

11. Characterization of A for Given H 

Suppose that U is a unitary matrix which diagonalizes H. i.e. 

U*HU = G = diag(yl, ...,yn) ( 4 )  

xhere are the eigenvalues of H. Then define 
j 



and 

B = U*(A+A*)U 

( 5 )  

S = U*(A-A*)U 

so that (2) and (3) become 

and 

BG + GB = 21 

SG = GS. 

For a given matrix H we may completely characterize the matrix A by: 

be t h e  eigenwduQn and U a THEOREM 1. LeA y j ,  j = 1 ,..., n,  

uvLctatLy dcagona,P,iza 0 6  a given ffemLCLan rna%%Lx H. 

pa,tt 0 6  a mcLtnix A which batin6iea (1) iA giwen by 

Then f i e  ffedLLun 

A + A* = H-' + UBIU* 

A - A* = USIU* (9)  

P4oud: If bij  is an element of the Hermitian matrix B defined 

by ( 5 ) ,  then (6) yields 

I 1  ) = ? '  i , j  = 1 , . . . ,  n .  ij !Lj 1 ,  i' I 

, 



.' 

= 0 if (Yi+Yj) # 0 , and bij Since H is nonsingular, bii = l/Yi , 

bij = bji is arbitrary whenever (yi+yj) = 0. Then B = G - l  + B1 , which 
using (4) and (5) results in (8). If sij is an element of the skew- 

Hermitian matrix S, then (7) can be expressed as 

k,& = 1,. . . ,n 

= 0 whenever yk # yg , and skR is slce so that s is arbitrary, kk 
yk = yt . Thus, with S = S , (5) results in (9). 1 arbitrary whenever 

A consequence of Theorem 1 is: 

COROLLARY 1.1. 7 6  (y +y.) # 0 605 aeR i and j and i6 (1) 
i J  

hot&, lthen A and H commute and A A n o d .  

P5Ood: If (yi+y.) # 0 for all i and j , then B1 = 0 and 
J 

-1 
(A+A*) = H so that (A+A*) trivially corn-Utes with H. But from (3 ) ,  

(A-A*) also commutes with H so that A and H commute. Furthermore, 

if (A-A*) commutes with H, it also commutes with H , so that (A-A*) -1 

commutes with (A+A*) and therefore A is normal. I 

This corollary was proven by Barker [l] with the additional (and 

unnecessary) assumption of y # y j  . Furthermore, the proof of the coral- 

lary contains the proof of the following theorem, which is a l so  contained 

in Barker: 

i 

THEOREM 2. 7 6  (1) hold4 io& home f f e a u n  m c t d x  H and id 

(A+A*) and H commute, then A h nonmde. 

Then we also have: 

COLLARY 2.1. 7 6  (1) bok% 605 dame H e w n  maIXLx H arid i6 

A and H commute, Zhen A nom&. 

P5006: If A and H commute, then so do (A+A*) and H , so 

that by Theorem 2, A is normal. m 

- 3- 



111. Characterization of H for Given A 

We now seek Hermitian matrices H such that (1) is satisfied for a 

given complex matrix A. We first characterize such H using the diagonalizer 

of the skew-Hermitian part of the given matrix A: 

THEOREM 3 .  L e A  v be a uni;tany d i a g o w z e r r  o b  t h e  6 h w - H e U a n  

paht 06 a given m*x A. L e A  B = V*(A+A*)V. Then i6 Rhe (i,j) eeement 

0 6  B zetro wheneve& (bii+b. .) # 0 , H given by 
bij J J  

H = V diag(b-' 11' . . . ,b-')V* nn 

~2 a aoClLtion 06 (1). 
Pkood: With H given by (lo), (2) can be expressed as 

b . .  (l/bii+l/b. .I = 26ij 
=J J J  

i,j = 1, ..., n 

which is an identity for i = j . For i # j , (11) becomes 

b.. (bii+b. .I = 0 
1 J  J J  

which is again an identity due to the hypothesis of the theorem. Further- 

more, ( 3 )  holds trivially, since under the unitary transformation V , H  

and (A-A*) are both diagonalized. Since (2) and ( 3 )  h o l d ,  then so does 

(1) - 
Remahk: If the eigenvalues of (A-A*) are distinct, then the 

hypothesis about the elements of B are necessary for a solution H of 

(1) to exist. Furthermore, if such a solution does exist, it is uniquely 

given by (10). 

We now consider the case where (A+A*) and -(A+A*) have no common 

eigenvalue: 



THEOREM 4 .  L e t  Bi, i = l,...,n ,be the e i g e n v a t u e n  and w be a 

unctahy diagonatizeh 06 Rhe ff- p a t t  06 a g i v e n  m&x A . L a  

s = w*(A-A*)W . T h e n  .id (B.+B.)  # 0 60/r a&? i a n d  j , (1) han a 

4 o U o n  H on& id 

&en H = (A+A*)-' . 

1 :  

sij = 0 w h e n e v m  Bi # Bj . 16 Rhin .b Rhe w e ,  

G = W*HW . 

Then (2) can be expressed as 

gi j (Bi+Bj> = 26ij i,j = l,...,n 

is an element of G, so that gi j where 

gii = l/Bi and g ij = O , i # j . 

(12) 

(13) 

Then (3) can be written as 

S..kii -g. J J  .) = 0 i,j = 1,. . ,n 
1J 

or from (13) 

s ij (Bi-aj) = 0 i,j = l,...,n (14) 

= O  or i ='j ij ij where s is an element of S . Therefore either s 

for a solution to exist. Then if (14) is valid for all i and j , (12) 

and (13) yield H = (A+A*)-! 

Another result of Barker follows immediately from this theorem: 

COROLLARY 4.1. 16 (1) haLcb do& some H e w a n  m&<x H and 

(A+A*) and -(A+A*) have no common e L g e n v d e u e ,  t h e n  A ,& n o t m a t .  

PJlOOd: By Theorem 4 ,  i f  (A+An) and -(A+A*) have no common eigen- 

value and (1) holds, then H = (A+A*)-' so that trivially (A+A*) and H 

commute. Then, by Theorem 2, A is normal. 
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